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1·γx + α(α+1)β(β+1)
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Carl Friedrich Gauss

INTRODUCTION

1.

The series, we attempt to investigate in this comment, can be considered
as function of the four quantities α, β, γ, x, which we will call its elements,
distinguishing in their order the first element α, the second β, the third γ,
the fourth x. The first element can obviously be permuted with the second:
Therefore, if, for the sake of brevity, we denote our series by F(α, β, γ, x), we
will have F(β, α, γ, x) = F(α, β, γ, x).

2.

Attributing determined values to the elements α, β, γ, our function goes over
into a function of the one variable x, which obviously terminates after the
1− α-th or 1− β-th term, if α− 1 or β− 1 is a negative integer number, but
runs to infinity in all remaining cases. In the first case the series exhibits a

*Original Title: „Circa seriem infinitam 1+ αβ
1·γ x+ α(α+1)β(β+1)

1·2·γ(γ+1) xx+ α(α+1)(α+2)β(β+1)(β+2)
1·2·3·3γ(γ+1)(γ+2) x3 +

etc. Pars prior“, first published in „Commentationes societatis regiae scientiarum Gottingensis
recentiores Band II, 1813“, reprinted in „Carl Friedrich Gauß Werke: Volume 3 pp. 123 - 162“,
translated by: Alexander Aycock for the project „Euler-Kreis Mainz“
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rational algebraic function, in the second on the other hand a transcendental
function in most cases. The third element γ must neither be a negative integer
number nor = 0, so that we are not led to infinitely large terms.

3.

The coefficients of the powers xm, xm+1 in our series have the ratio

1 +
γ + 1

m
+

γ

mm
: 1 +

α + β

m
+

αβ

mm
and hence come the closer to the ratio of equality the greater m is assumed.
Therefore, if a determined value is also attributed to the fourth element x,
the convergence or divergence will depend on this value. Of course, if a real
positive or negative value, with an absolute value smaller than 1, is attributed
to x, the series will certainly be convergent, if not immediately from the
beginning, then after a certain interval, and the series will lead to a finite
and definite value. The same will happen for an imaginary value of x of the
form a + b

√
−1, if aa + bb < 1. Otherwise, for a real value of x, larger than

1, or for an imaginary value of the form a + b
√
−1, if aa + bb > 1, the series,

if not immediately, nevertheless after a certain interval, will necessarily be
divergent so that one can not speak of a sum in this case. Finally, for the value
x = 1 (or more generally for a value of the form a + b

√
−1, if aa + bb = 1)

the convergence or divergence of the series will depend on the nature of α, β,
γ, what we will discuss, especially for the sum of the series for x = 1, in the
third section.
Therefore, it is plain, if our function was defined as the sum of a series, that
the investigation in its nature is restricted to the case, where the series indeed
converges, and hence the question, what value the series has for a value larger
than 1, is inappropriate. But below, from the fourth section, we will base our
function on a higher principle, which allows an most general application.

4.

The differentiation of our series, with respect to the fourth element x only,
leads to a similar function, since one obviously has

dF(α, β, γ, x)
dx

=
αβ

γ
F(α + 1, β + 1, γ + 1, x).

The same holds for iterated differentiations.
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5.

It will be worth one’s while, to list up certain functions, our series can be
reduced to, and which are very frequently used in whole analysis, here.

I. (t + u)n = tnF
(
−n, β, β,−u

t

)
where the element β is arbitrary.

II. (t + u)n + (t− u)n = 2tnF
(
− 1

2 n,− 1
2 n + 1

2 , 1
2 , uu

tt

)
III. (t + u)n + tn = 2tnF

(
−n, ω, 2ω,− u

t

)
while ω denotes an infinitely small quantity.

IV. (t + u)n − (t− u)n = 2ntn−1F
(
− 1

2 n + 1
2 ,− 1

2 + 1, 3
2 , uu

tt

)
V. (t + u)n − tn = ntn−1uF

(
1− n, 1, 2,− u

t

)
VI. log(1 + t) = tF(1, 1, 2,−t)

VII. log 1+t
1−t = 2tF

( 1
2 , 1, 3

2 , tt
)

VIII. et = F
(
1, k, 1, t

k

)
= 1 + tF

(
1, k, 2, t

k

)
= 1 + t + 1

2 ttF
(
1, k, 3, t

k

)
etc.

while e denotes the base of hyperbolic logarithms, k an infinitely large number.

IX. et + e−t = 2F
(

k, k′,
1
2

,
tt

4kk′

)
while k, k′ denote infinitely large numbers.
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X. et − e−t = 2F
(
k, k′, 3

2 , tt
4kk′
)

XI. sin t = tF
(
k, k′, 3

2 ,− tt
4kk′
)

XII. cos t = F
(
k, k′, 1

2 ,− tt
4kk′
)

XIII. t = sin t · F
( 1

2 , 1
2 , 3

2 , sin2 t
)

XIV. t = sin t · cos t · F
(
1, 1, 3

2 , sin2 t
)

XV. t = tan t · F
( 1

2 , 1, 3
2 ,− tan2 t

)
XVI. sin nt = n sin t · F

( 1
2 n + 1

2 ,− 1
2 n + 1

2 , 3
2 , sin2 t

)
XVII. sin nt = n sin t · cos t · F

( 1
2 n + 1,− 1

2 n + 1, 3
2 , sin2 t

)
XVIII. sin nt = n sin t · cosn−1 tF

(
− 1

2 n + 1,− 1
2 n + 1

2 , 3
2 ,− tan2 t

)
XIX. sin nt = n sin t · cos−n−1 tF

( 1
2 n + 1, 1

2 n + 1
2 , 3

2 ,− tan2 t
)

XX. cos nt = F
( 1

2 n,− 1
2 n, 1

2 , sin2 t
)

XXI. cos nt = cos t · F
( 1

2 n + 1
2 ,− 1

2 n + 1
2 , 1

2 , sin2 t
)

XXII. cos nt = cosn t · F
(
− 1

2 n,− 1
2 n + 1

2 , 1
2 ,− tan2 t

)
XXIII. cos nt = cos−n t · F

( 1
2 n + 1

2 , 1
2 n, 1

2 ,− tan2 t
)

6.

The preceding functions are either algebraic or transcendental and depend on
logarithms or circular arcs. But we did not start our general investigation for
the sake of these, but rather to promote the theory of higher transcendental
functions, whose very broad field is contained in our series. Among infini-
tely many other things, the coefficients, resulting from the expansion of the
function (aa + bb− 2ab cos ϕ)−n into a series of cosines of the angles ϕ, 2ϕ,
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3ϕ etc., extend to this, which we will consider in an own paper in more detail
on another occasion. But those coefficients can be reduced to the form of our
series in several ways. Of course, by setting

(aa+ bb− 2ab cos ϕ)−n = Ω = A+ 2A′ cos ϕ+ 2A′′ cos 2ϕ+ 2A′′′ cos 3ϕ+ etc.

firstly we have

A = a−2nF
(

n, n, 1,
bb
aa

)
A′ = na−2n−1bF

(
n, n + 1, 2,

bb
aa

)
A′′ =

n(n + 1)
1 · 2 a−2n−2bbF

(
n, n + 2, 3,

bb
aa

)
A′′′ =

n(n + 1)(n + 2)
1 · 2 · 3 a−2n−3b3F

(
n, n + 3, 4,

bb
aa

)
etc.

For, if aa + bb− 2ab cos ϕ is considered as as the product of a− br by a− br−1

(while r denotes the quantity cos ϕ + sin ϕ
√
−1), Ω becomes equal to the

product

of a−2n

by 1 + n
br
a
+

n(n + 1)
1 · 2 · bbrr

aa
+

n(n + 1)(n + 2)
1 · 2 · 3 · b3r3

a3 + etc.

by 1 + n
br−1

a
+

n(n + 1)
1 · 2 · bbr−2

aa
+

n(n + 1)(n + 2)
1 · 2 · 3 · b3r−3

a3 + etc.

Since this product must be identical to

A + A′(r + r−1) + A′′(rr + r−2) + A′′′(r3 + r−3) + · · ·

the values given above result immediately.
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Further, secondly we have

A = (aa + bb)−nF
(

1
2

n,
1
2

n +
1
2

, 1,
4aabb

(aa + bb)2

)
A′ = n(aa + bb)−n−1abF

(
1
2

n +
1
2

,
1
2

n + 1, 2,
4aabb

(aa + bb)2

)
A′′ =

n(n + 1)
1 · 2 (aa + bb)−n−2aabbF

(
1
2

n + 1,
1
2

n +
3
2

, 3,
4aabb

(aa + bb)2

)
A′′′ =

n(n + 1)(n + 2)
1 · 2 · 3 (aa + bb)−n−3a3b3F

(
1
2

n +
3
2

,
1
2

n + 2, 4,
4aabb

(aa + bb)2

)
etc.

which values are easily deduced from

Ω(aa + bb)n = 1 + n(r + r−1)
ab

aa + bb
+

n(n + 1)
1 · 2 (r + r−1)2 aabb

(aa + bb)2 + etc.

Thirdly

A = (a + b)−2nF
(

n,
1
2

, 1,
4ab

(a + b)2

)
A′ = n(a + b)−2n−2abF

(
n + 1, 3

2 , 1,
4ab

(a + b)2

)
A′′ =

n(n + 1)
1 · 2 (a + b)−2n−4aabbF

(
n + 2, 5

2 , 1,
4ab

(a + b)2

)
A′′′ =

n(n + 1)(n + 2)
1 · 2 · 3 (a + b)−2n−6a3b3F

(
n + 3, 7

2 , 1,
4ab

(a + b)2

)
etc.

Finally, fourthly
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A = (a− b)−2nF
(

n,
1
2

, 1,− 4ab
(a− b)2

)
A′ = n(a− b)−2n−2abF

(
n + 1,

3
2

, 1,− 4ab
(a− b)2

)
A′′ =

n(n + 1)
1 · 2 (a− b)−2n−4aabbF

(
n + 2, 5

2 , 1,− 4ab
(a− b)2

)
A′′′ =

n(n + 1)(n + 2)
1 · 2 · 3 (a− b)−2n−6a3b3F

(
n + 3,

7
2

, 1,− 4ab
(a− b)2

)
etc.

Those and these values are easily found from

Ω(a + b)2n =

(
1−

4ab cos2 1
2 ϕ

(a + b)2

)−n

= 1 + n
ab

(a + b)2

(
r

1
2 + r−

1
2

)2
+

n(n + 1)
1 · 2

aabb
(a + b)4

(
r

1
2 + r−

1
2

)4
+ etc.

Ω(a− b)2n =

(
1−

4ab sin2 1
2 ϕ

(a− b)2

)−n

= 1 + n
ab

(a− b)2

(
r

1
2 − r−

1
2

)2
+

n(n + 1)
1 · 2

aabb
(a + b)4

(
r

1
2 − r−

1
2

)4
+ etc.

FIRST SECTION

RELATIONS AMONG CONTIGUOUS FUNCTIONS

7.

We call a function contiguous to F(α, β, γ, x), if it results from the latter by
increasing or decreasing the first, second or third element by 1, while all
three remaining elements remain the same. Therefore, the primary function
F(α, β, γ, x) yields six contiguous functions, among two of which and the
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primary function a simple linear relation exists. We give these equations,
fifteen in total, here, for the take of brevity always omitting the last element,
which is always to be understood, and denoting the primary function simply
by F.

[1] 0 = (γ− 2α− (β− α)x)F + α(1− x)F(α + 1, β, γ)− (γ− α)F(α− 1, β, γ)

[2] 0 = (β− α)F + αF(α + 1, β, γ)− βF(α, β + 1, γ)

[3] 0 = (γ− α− β)F + α(1− x)F(α + 1, β, γ)− (γ− β)F(α, β− 1, γ)

[4] 0 = γ(α− (γ− β)x)F− αγ(1− x)F(α + 1, β, γ) + (γ− α)(γ− β)F(α, β, γ + 1)

[5] 0 = (γ− α− 1)F + αF(α + 1, β, γ)− (γ− 1)F(α, β, γ− 1)

[6] 0 = (γ− α− β)F− (γ− α)F(α− 1, β, γ) + β(1− x)F(α, β + 1, γ)

[7] 0 = (β− α)(1− x)F− (γ− α)F(α− 1, β, γ) + (γ− β)F(α, β− 1, γ)

[8] 0 = γ(1− x)F− γF(α− 1, β, γ) + (γ− β)xF(α, β, γ + 1)

[9] 0 = (α− 1− (γ− β− 1)x)F + (γ− α)F(α− 1, β, γ)− (γ− 1)(1− x)F(α, β, γ− 1)

[10] 0 = (γ− 2β + (β− α)x)F + β(1− x)F(α, β + 1, γ)− (γ− β)F(α, β− 1, γ)

[11] 0 = γ(β− (γ− α)x)F− βγ(1− x)F(α, β + 1, γ)− (γ− α)(γ− β)F(α, β, γ + 1)

[12] 0 = (γ− β− 1)F + βF(α, β + 1, γ)− (γ− 1)F(α, β, γ− 1)

[13] 0 = γ(1− x)F− γF(α, β− 1, γ) + (γ− α)xF(α, β, γ + 1)

[14] 0 = (β− 1− (γ− α− 1)x)F + (γ− β)F(α, β− 1, γ)− (γ− 1)(1− x)F(α, β, γ− 1)

[15] 0 = γ(γ− 1− (2γ− α− β− 1)x)F + (γ− α)((γ− β)xF(α, β, γ + 1)

− γ(γ− 1)(1− x)F(α, β, γ− 1)

8.

Now, lo and behold the proof of these formulas. Setting

(α + 1)(α + 2) · · · (α + m− 1)β(β + 1) · · · (β + m− 2)
1 · 2 · 3 · · ·m · γ(γ + 1) · · · (γ + m− 1)

= M

the coefficient of the power xm will be
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in F α(β + m− 1)M

in F(α, β− 1, γ) α(β− 1)M

in F(α + 1, β, γ) (α + m)(β + m− 1)M

in F(α, β, γ− 1)
α(β + m− 1)(γ + m− 1)M

γ− 1

but the coefficient of the power xm−1 in F(α + 1, β, γ), or the coefficients of
the power xm in xF(α + 1, β, γ) will be

= m(γ + m− 1)M

Hence the truth of the formulas 5 and 3 follows immediately; permuting α

and β, formula 12 results from 5, 2 from these two by elimination. Hence by
the same permutation 6 results from 3; having combined 6 and 12 formula 9
results, hence by permutation 14, having combined which one has 7; finally,
1 is found from 2 and 6, and hence 10 by permutation. Formula 8, in the
same way as formulas 5 and 3, can be derived from the considerations of the
coefficients (and in the same way, if one wants to, all 15 formulas could be
found), or even more elegantly, from the already known formulas as follows.
Changing the element α into α− 1 and γ into γ− 1 in formula 5, it results

0 = (γ− α + 1)F(α− 1, β, γ + 1) + (α− 1)F(α, β, γ + 1)− γF(α− 1, β, γ)

But in formula 9 changing γ into γ + 1,

0 = (α− 1− (γ− β)x)F(α, β, γ+ 1)+ (γ− α+ 1)F(α− 1, β, γ+ 1)−γ(1− x)F(α, β, γ)

From the subtraction of these formulas 8 results immediately, and hence 13
by permutation. 4 results from 1 and 8, and hence 11 by permutation. Finally,
15 is deduced from 8 and 9.
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9.

If α′ − α, β′ − β, γ′ − γ and α′′ − α, β′′ − β, γ′′ − γ are integer (positive or
negative) numbers, it is possible to go over from the function F(α, β, γ) to the
function F(α′, β′, γ′) and hence from this one to the function F(α′′, β′′, γ′′) by
a series of similar functions, so that any arbitrary function is contiguous to
the preceding or the following, of course, by first changing one element, e.g.,
α continuously by 1 until one finally got from F(α, β, γ) to F(α′, β, γ), further,
by changing the second element, until one gets to F(α′, β′, γ), and finally by
changing the third element, until one gets to F(α′, β′, γ′), and hence from this
one to F(α′′, β′′, γ′′). Therefore, since by art. 7 one has linear equations among
the first, second and third function, and generally among three arbitrary
subsequent functions of this series, it is easily seen, that hence by elimination
a linear equation among the functions F(α, β, γ), F(α′, β′, γ′), F(α′′, β′′, γ′′)
results so that in general from two functions, whose first three elements
differ by integer numbers, it is possible to derive another arbitrary function
enjoying the same property, if the fourth element remains the same, of course.
Furthermore, here it suffices for us to have stated this extraordinary truth, and
we will not spend more time on these calculations, by which the operations
necessary for this purpose are rendered as short as possible.

10.

Let, e.g., the functions

F(α, β, γ), F(α + 1, β, γ), F(α + 1, β + 1, γ + 1), F(α + 2, β + 2, γ + 2)

be propounded, among which a linear relation is to be found. Let us connect
them by contiguous functions in the following way:

F(α, β, γ) = F

F(α + 1, β, γ) = F′

F(α + 1, β + 1, γ) = F′′

F(α + 1, β + 1, γ + 1) = F′′′

F(α + 2, β + 1, γ + 1) = F′′′′

F(α + 2, β + 2, γ + 1) = F′′′′′

F(α + 2, β + 2, γ + 2) = F′′′′′′
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Therefore, we have five linear equations (from the formulas 6, 13, 5 of art. 7)

I. 0 = (γ− α− 1)F− (γ− α− 1− β)F′ − β(1− x)F′′

II. 0 = γF′ − γ(1− x)F′′ − (γ− α− 1)xF′′′

III. 0 = γF′′ − (γ− α− 1)F′′′ − (α + 1)F′′′′

IV. 0 = (γ− α− 1)F′′′ − (γ− α− 2− β)F′′′′ − (β + 1)(1− x)F′′′′′

V. 0 = (γ + 1)F′′′′ − (γ + 1)(1− x)F′′′′′ − (γ− α− 1)xF′′′′′

From I and II by eliminating F′ it results

VI. 0 = γF− γ(1− x)F′′ − (γ− α− β− 1)xF′′′

Hence from this and from III eliminating F′′

VII. 0 = γF− (γ− α− 1− βx)F′′′ − (α + 1)(1− x)F′′′′

Further, from IV and V, eliminating F′′′′′

VIII. 0 = (γ + 1)F′′′′ − (γ + 1)F′′′′ + (β + 1)xF′′′′′′

Hence form this and VII, eliminating F′′′′

IX. 0 = γ(γ+ 1)F− (γ+ 1)(γ− (α+ β+ 1)x)F′′′− (α+ 1)(β+ 1)x(1− x)F′′′′′′

11.

If we wanted to exhaust all relations among the three functions F(α, β, γ),
F(α + λ, β + µ, γ + ν), F(α + λ′, β + µ′, γ + ν′), in which λ, µ, ν, λ′, µ′, ν′ are
either = 0 or +1 or = −1, the total amount of formulas would rise to 325. Such
a collection would be useful, at least for the simpler ones of these formulas:
but here it shall suffice, to have given only a few, which were found either
from the formulas of art. 7, or if one likes it better, in the same way as the first
two of them in art. 8; and everyone will be able to prove them easily, if he or
she wants to.
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[16] F(α, β, γ)− F(α, β, γ− 1) = − αβx
γ(γ−1)F(α + 1, β + 1, γ + 1)

[17] F(α, β + 1, γ)− F(α, β, γ) = αx
γ F(α + 1, β + 1, γ + 1)

[18] F(α + 1, β, γ)− F(α, β, γ) = βx
γ F(α + 1, β + 1, γ + 1)

[19] F(α, β + 1, γ)− F(α, β, γ) = α(γ−β)x
γ(γ+1) F(α + 1, β + 1, γ + 2)

[20] F(α + 1, β, γ)− F(α, β, γ) = β(γ−α)x
γ(γ+1) F(α + 1, β + 1, γ + 2)

[21] F(α− 1, β + 1, γ)− F(α, β, γ) = (α−β−1)x
γ F(α, β + 1, γ + 1)

[22] F(α + 1, β− 1, γ)− F(α, β, γ) = (β−α−1)x
γ F(α + 1, β, γ + 1)

[23] F(α− 1, β + 1, γ)− F(α + 1, β− 1, γ) = (α−β)x
γ F(α + 1, β + 1, γ + 1)

SECOND SECTION

CONTINUED FRACTIONS

12.

Denoting

F(α, β + 1, γ + 1, x)
F(α, β, γ, x)

by G(α, β, γ, x)

we have

F(α + 1, β, γ + 1, x)
F(α, β, γ, x)

=
F(β, α + 1, γ + 1, x)

F(β, α, γ, x)
= G(β, α, γ, x)

and hence by dividing equation 19 by F(α, β + 1, γ + 1, x),

1− 1
G(α, β, γ, x)

=
α(γ− β)

γ(γ + 1)
xG(β + 1, α, γ + 1, x)

or
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[24] G(α, β, γ, x) =
1

1− α(γ−β)
γ(γ+1) xG(β + 1, α, γ + 1, x)

and since hence

G(β + 1, α, γ + 1, x) =
1

1− (β+1)(γ+1−α)
(γ+1)(γ+2) xG(α + 1, β + 1, γ + 2, x)

etc., for G(α, β, γ, x) the following continued fraction results

[25]
F(α, β + 1, γ + 1, x)

F(α, β, γ, x)
=

1

1−
ax

1−
bx

1−
cx

1−
dx

1− etc.
with

a =
α(γ− β)

γ(γ + 1)
b =

(β + 1)(γ + 1− α)

(γ + 1)(γ + 2)

c =
(α + 1)(γ + 1− β)

(γ + 1)(γ + 2)
d =

(β + 2)(γ + 2− α)

(γ + 3)(γ + 4)

e =
(α + 2)(γ + 2− β)

(γ + 4)(γ + 5)
f =

(β + 3)(γ + 3− α)

(γ + 5)(γ + 6)

etc., the law of which progression is obvious.
Further, from the equations 17, 18, 21, 22 it follows
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[26]
F(α, β + 1, γ, x)

F(α, β, γ, x)
=

1
1− αx

γ G(β + 1, α, γ, x)

[27]
F(α + 1, β, γ, x)

F(α, β, γ, x)
=

1

1− βx
γ G(α + 1, β, γ, x)

[28]
F(α− 1, β + 1, γ, x)

F(α, β, γ, x)
=

1

1− (α−β−1)x
γ G(β + 1, α− 1, γ, x)

[29]
F(α + 1, β− 1, γ, x)

F(α, β, γ, x)
=

1

1− (β−α−1)x
γ G(α + 1, β, γ, x)

whence, having substituted its values for the function G in the continued
fractions, as many new continued fractions result.
Furthermore, it is immediately clear, that the continued fraction in formula
25 terminates, if one of the numbers α, β, γ− α, γ− β was a negative integer,
but otherwise continues to infinity.

13.

The continued fractions found in the preceding art. are of greatest importance,
and it is possible to assert that hardly any continued fractions, proceeding in
an obvious structure, have been found by the analysts to this point, which are
not special cases of our general formulas. The case, in which in formula 25
one sets β = 1, whence F(α, β, γ, x) = 1, is especially memorable, and hence,
writing γ− 1 for γ

[30] F(α, 1, γ) = 1 +
α

γ
x +

α(α + 1)
γ(γ + 1)

xx +
α(α + 1)(α + 2)
γ(γ + 1)(γ + 2)

x3 + etc.

=
1

1−
ax

1−
bx

1−
cx

1− dx
1− etc.

where
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a =
α

γ
b =

γ− α

γ(γ + 1)

c =
(α + 1)γ

(γ + 1)(γ + 2)
d =

2(γ + 1− α)

(γ + 2)(γ + 3)

e =
(α + 2)(γ + 1)
(γ + 3)(γ + 4)

f =
3(γ + 2− α)

(γ + 4)(γ + 5)

etc. etc.

14.

It will be worth one’s while, to have given some special cases here. From
formula I of art. 5 setting t = 1, β = 1 it follows

[31] (1 + u)n =
1

1−
nu

1 +
n+1

2 u

1−
n−1
2·3 u

1 +
2(n+2)

3·4 u

1−
2(n−2)

4·5 u
1 + etc.

From formulas VI, VII art. 5 it follows

[32] log(1 + t) =
t

1 +
1
2 t

1 +
1
6 t

1 +
2
6 t

1 +
2

10 t

1 +
3

10 t

1 +
3
14 t

1 + etc.
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[33] log
1 + t
1− t

=
2t

1−
1
3 tt

1−
2·2
3·5 tt

1−
3·3
5·7 tt

1−
4·4
7·9 tt

1− etc.
Changing the − signs into + here, a continued fraction for arctan t results.
Further, we have

[34] et =
1

1−
t

1 +
1
3 t

1−
1
6 t

1 +
1
6 t

1−
1
10 t

1 +
1
10 t

1− etc.

[35] t =
sin t cos t

1−
1·2
1·3 sin2 t

1−
1·2
3·5 sin2 t

1−
3·4
5·7 sin2 t

1−
3·4
7·9 sin2 t

1−
5·6
9·11 sin2 t
1− etc.

Setting α = 3, γ = 5
2 , from formula 30 the continued fraction propounded

in Theoria motus corporum coelestium art. 90 follows immediately. In the same
paper two other continued fractions were given, whose expansion we want to
show on this occasion. Setting

Q = 1−
5·8
7·8 x

1−
1·4
9·11 x

1− 7·10
11·13 x etc.

16



in the mentioned paper we have x− ξ =
x

1 + 2x
35Q

=
xQ

Q + 2
35 x

, and hence

ξ =
2

35 xx

Q + 2
35 x

which is the first formula: The second formula is found as follows: Setting

R = 1−
1·4
7·9 x

1−
5·8
9·11 x

1−
3·6

11·13 x

1− 7·10
13·15 x etc.

by formula 25 it will be

1
R

= G
(

1
2

,
3
2

,
7
2

, x
)

and
1
Q

= G
(

5
2

,−1
2

,
7
2

, x
)

Hence

RF
(

1
2

,
5
2

,
7
2

, x
)

= F
(

1
2

,
3
2

,
7
2

, x
)

QF
(

5
2

,
1
2

,
9
2

, x
)

= F
(

5
2

,−1
2

,
7
2

, x
)

or by permuting the first and second element

QF
(

1
2

,
5
2

,
9
2

, x
)
= F

(
−1

2
,

5
2

,
7
2

, x
)

But by equation 21 we have

F
(
−1

2
,

5
2

,
7
2

, x
)
− F

(
1
2

,
3
2

,
7
2

, x
)
= −4

7
xF
(
−1

2
,

5
2

,
9
2

, x
)

whence Q = R− 4
7 x, having substituted which value in the formula given

above it results

ξ =
2
35 xx

R− 18
35 x

which is the second formula.
Setting α = m

n , x = −γnt in formula 30 for an infinitely large value of γ

17



[36] F
(m

n
, 1, γ,−γnt

)
= 1−mt+m(m+n)tt−m(m+n)(m+ 2n)t3 + etc.

=
1

1 +
mt

1 +
nt

1 +
(m + n)t

1 +
(m + 2n)t

1 + 3nt etc.

THIRD SECTION

ON THE SUM OF OUR SERIES SETTING THE FOURTH ELEMENT = 1,
WHERE AT THE SAME TIME CERTAIN OTHER TRANSCENDENTAL

FUNCTIONS ARE DISCUSSED

15.

If the elements α, β, γ are all positive quantities, all coefficients of the powers
of the fourth element x become positive: But if the one or the other of them is
negative, at least from a certain power xm all coefficients will have the same
sign, if m is larger than the absolute value of the largest negative element.
Further, hence it is immediately clear that the sum of the series for x = 1 can
only be finite, if the coefficients vanish at least for the infinitesimal term, or,
to express it in terms of the analysts, if the coefficient of the term x∞ is = 0.
But we will show, and even for those, who favor the rigorous method of the
ancient Greek mathematician, in all rigor,
firstly, that the coefficients (if the series does not terminate) grow to infinity, if
α + β− γ− 1 was a positive quantity,
secondly, that the coefficients always converge to a finite limit, if it was α + β−
γ− 1 = 0,
thirdly, that the coefficients decrease continuously, if α + β − γ − 1 was a
negative quantity,
fourthly, that the sum of our series for x = 1, although there is no obstruction
to convergence in the third case, is infinite, of α + β− γ is a positive quantity
or = 0,
fifthly, that the sum is indeed finite, if α + β− γ was a negative quantity.
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16.

We will investigate this infinite more general series M, M′, M′′, M′′′ etc.
formed in such a way that the quotients M′

M , M′′
M′ ,

M′′′
M′′ etc. are the values of the

fraction

tλ + Atλ−1 + Btλ−2 + Ctλ−3 + etc.
tλ + atλ−1 + btλ−2 + ctλ−3 + etc.

for t = m, t = m + 1, t = m + 2 etc. For the sake of brevity, we will denote the
numerator of this fraction by P, the denominator by p; furthermore, we will
assume that P and p are not identical, or the differences A− a, B− b, C− c
etc. do not vanish all at the same time.

I. If the first of the differences A− a, B− b, C− c etc., which does not vanish,
is positive, one will be able to assign a certain limit l, from the point the value
of t has exceeded which, the values of the functions P and p certainly become
positive, and P > p. It is obvious that this happens, if for l the largest real
root of the equation p(P− p) = 0 is taken; but if this equation has no real
roots at all, this property holds all values of t. Therefore, then in M′

M , M′′
M′ ,

M′′′
M′′

at least after a certain interval (if not for all) all terms will be positive and
smaller than 1; therefore, if none is = 0 and none becomes infinitely large,
it is perspicuous, that the series M, M′, M′′, M′′′ etc., if not from the beginning,
nevertheless after a certain interval will have terms with the same sign and these
terms will increase continuously.
The same way, if the first of the differences A− a, B− b, C − c etc., which
does not vanish, is negative, the series M, M′, M′′, M′′′ etc., if not from the
beginning, nevertheless after a certain interval will have only terms with the
same sign and these terms will increase continuously.

II. If already the coefficients A and a are different, the terms of the series
M, M′, M′′, M′′′ etc. beyond all limits or the infinitesimal terms will either
grow or decrease, depending on whether A− a is positive or negative: We
demonstrate it this way. If A− a is a positive quantity, take an integer number
h in such a way that h(A− a) > 1, and set Mh

m = N, M′h
m+1 = N′, M′′h

m+2 = N′′,
M′′′h
m+3 = N′′′ etc., and tPλ = Q, (t + 1)ph = q. Then it is plain that N′

N , N′′
N′ ,

N′′′
N′′

etc. are the values of the fraction Q
q putting t = m, t = m + 1, t = m + 2 etc.,

but Q and q are algebraic functions of this form
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Q = tλh+1 + hAtλh + etc.

q = tλh+1 + (ha + 1)tλh + etc.

Hence, since by assumption the difference hA− (ha + 1) is a positive quantity,
the terms of the series N, N′, N′′, N′′′ etc., if not from the beginning, nevert-
heless after a certain interval, will increase continuously (by I); hence the
terms of the series mN, (m + 1)N′, (m + 2)N′′, (n + 3)N′′′ etc. will necessarily
increase beyond all limits, and therefore also the terms of the series M, M′,
M′′, M′′′ etc. whose powers to the exponent h are equal to those. Q. E. P.
If A− a is a negative quantity, one has to assume an integer h of such a kind
that h(a− A) becomes smaller than 1, whence by the same arguments the
terms of the series

mMh, (m + 1)M′h, (m + 2)M′′h, (m + 3)M′′′h etc.

after a certain interval will decrease continuously. Therefore, the terms of the
series Mh, M′h, M′′h and hence also the terms of this series M, M′, M′′, M′′′

etc. will necessarily decrease continuously. Q. E. S.

III. But if the first coefficients A and a are equal, the terms of the series M,
M′, M′′, M′′′ etc. will converge to a finite limit, which we demonstrate this
way. First, let us assume that terms of the series increase continuously after a
certain interval, or the first of the differences B− b, C− c etc., which does not
vanish, is positive. Let h be an integer of such a kind that h + b− B becomes a
positive quantity, and let us set

M
(

m
m− 1

)h

= N, M′
(

m + 1
m

)h

= N′, M′′
(

m + 2
m + 1

)h

= N′′ etc.

and (tt− 1)hP = Q, t2h p = q so that N′
N , N′′

N′ etc. are the values of the fraction
Q
q for t = m, t = m + 1 etc. Therefore, since one has

Q = tλ+2h + Atλ+2h−1 + (B− h)tλ+2h−2 etc.

q = tλ+2h + Atλ+2h−1 + btλ+2h−2 etc.

and by assumption B− h− b is a negative quantity, the terms of the series N,
N′, N′′, N′′′ etc. at least after a certain interval will decrease continuously, and
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hence the terms M, M′, M′′, M′′′ etc., which are always respectively smaller
than those, while they increase continuously, can only converge to a finite
limit. Q. E. P.

If the terms of the series M, M′, M′′, M′′′ etc. after a certain interval decrease
continuously, one has to take an integer of such a kind for h that h + B− b is
a positive quantity, and by the same arguments it will be seen that the terms
of the series

M
(

m− 1
m

)h

, M′
(

m
m + 1

)h

, M′′
(

m + 1
m + 2

)h

etc.

after a certain interval, increase continuously, whence the terms of the series
M, M′, M′′, M′′′ etc., which are always respectively larger than those, while
they decrease continuously, necessarily can only decrease to a finite limit.

IV. Finally, concerning the sum of the series, whose terms are M, M′, M′′,
M′′′ etc., in the case, where these decrease infinitely, first, let us suppose that
A− a falls between 0 and −1, or A + 1− a is either a positive quantity or = 0.
Let h be a positive integer, arbitrary in the case, where A + 1− a is a positive
quantity, or an integer rendering the quantity h + m + A + B− b positive in
the case A + 1− a = 0. Then it will be

P(t− (m + h− 1)) = tλ+1 + (A + 1−m− h)tλ + (B− A(m + h− 1))tλ−1 etc.

p(t− (m + h)) = tλ+1 + (a−m− h)tλ + (b− a(m + h))tλ−1 etc.

where either A + 1−m− h− (a−m− h) will be a positive quantity or, if it is
= 0, at least B− A(m + h− 1)− (b− a(m + h)) will be positive. Hence (by I)
one will be able to assign a certain value l for the quantity t, the point from
which it is exceeded, the values of the fraction P(t−(m+h−1))

p(t−(m+h)) will always be
positive and smaller than 1. Let n be an integer greater than l and at the same
time greater than h, and let the terms of the series M, M′, M′′, M′′′ etc., which
correspond to the values t = m + n, t = m + n + 1, t = m + n + 2 etc., be N,
N′, N′′, N′′′ etc. Therefore,

(n + 1− 1)N′

(n− h)N
,

(n + 2− h)N′′

(n + 1− h)N′
,

(n + 3− h)N′′′

(n + 2− h)N′′
etc.

will be positive quantities greater than 1, whence
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N′ >
(n− h)N
n + 1− h

, N′′ >
(n− h)N
n + 2− h

, N′′′ >
(n− h)N
n + 3− h

etc.

and hence the sum of the series N + N′ + N′′ + N′′′ + etc. will be larger than
the sum of the series

(n− h)N
(

1
n− h

+
1

n + 1− h
+

1
n + 2− h

+
1

n + 3− h
+ etc.

)
no matter how many terms are collected. But the second series, while the
number of terms grows to infinity, exceeds every limit, since the sum of the
series 1 + 1

2 +
1
3 +

1
4 + etc., which is known to be infinite, also remains infinite,

if the terms 1+ 1
2 +

1
3 + etc. are subtracted from the beginning. Hence the sum

of the series N + N′ + N′′ + N′′′ + etc. and hence also the sum of this series
M+ M′+ M′′+ M′′′+ etc., of which that one is a part, grows beyond all limits.

V. But if A− a is a negative quantity, whose absolute is greater than 1, the
sum of the series M + M′ + M′′ + M′′′ + etc., if continued to infinity, will
certainly be finite. For, let h be a positive quantity smaller than a − A − 1,
and by the same arguments it will be demonstrated, that it is possible to
assign a certain value l of the quantity t, beyond which the fraction Pt

p(t−h−1)
always obtains positive values smaller than 1. If one takes an integer number
larger than l, m, h + 1 for n, and the terms of the series M, M′, M′′, M′′′ etc.
corresponding to the values t = n, t = n + 1, t = n + 2 etc., are denoted by N,
N′, N′′ etc., it will be

N′ <
n− h− 1

n
N, N′′ <

(n− h− 1)(n− h)
n(n + 1)

· N′ etc.

and hence the sum of the series N + N′ + N′′ + etc., no matter how many
terms are collected, will be smaller than the product of N by the sum of as
many terms of the series

1 +
n− h− 1

n
+

(n− h− 1)(n− h)
n(n + 1)

+
(n− h− 1)(n− h)(n− h + 1)

n(n + 1)(n + 2)
etc.

But the sum of this series can easily be assigned for an arbitrary number of
terms; of course,
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the first term is =
n− 1

h
− n− h− 1

h

the sum of two terms is =
n− 1

h
− (n− h− 1)(n− h)

hn

the sum of three terms is =
n− 1

h
− (n− h− 1)(n− h)(n− h + 1)

hn(n + 1)
etc.

and since the second part (by II) forms a series decreasing beyond all limits,
that sum, if continued to infinity, must be set = n−1

h . Hence N + N′+ N′′+ etc.,
if continued to infinity, will always remain smaller than N(n−1)

h , and hence
M + M′ + M′′ + etc. will certainly converge to a finite sum. Q. E. D.

VI. To apply, what we proved in general on the series M, M′, M′′ etc., to
the coefficients of the powers xm, xm+1, xm+2 etc. in the series F(α, β, γ, x), one
will have to set λ = 2, A = α + β, B = αβ, a = γ + 1, b = γ, whence the five
assertions propounded in the preceding art. follow immediately.

17.

Therefore, the investigation of the sum of the series F(α, β, γ, 1) is restricted by
its nature to the case, in which γ− α− β is a positive quantity, where that sum
always exhibits a finite quantity. But we mention the following observation in
advance. If the coefficients of the series 1 + ax + bxx + cx3 + etc. = S from a
certain term decrease beyond all limits, the product

(1− x)S = 1 + (a− 1)x + (b− a)xx + (c− b)x3 + etc.

must be set = 0 for x = 1, even if the sum of the series S becomes infinitely
large. For, since having collected two terms the sum becomes = a, having
collected three = b, having collected four = c etc., the limit of the sum, if
continued to infinity, is = 0. Therefore, if γ− α− β is a positive quantity, one
must set (1− x)F(α, β, γ, x) = 0 for x = 1, whence by equation 15 of art. 7 we
will have

0 = γ(α + β− γ)F(α, β, γ, 1) + (γ− α)(γ− β)F(α, β, γ + 1, 1) or
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[37] F(α, β, γ, 1) =
(γ− α)(γ− β)

γ(γ− α− β)
F(α, β, γ + 1, 1)

Hence, since

F(α, β, γ + 1, 1) =
(γ + 1− α)(γ + 1− β)

(γ + 1)(γ + 1− α− β)
F(α, β, γ + 2, 1)

F(α, β, γ + 2, 1) =
(γ + 2− α)(γ + 2− β)

(γ + 1)(γ + 1− α− β)
F(α, β, γ + 3, 1)

and so forth, generally, while k denotes an arbitrary positive integer, F(α, β, γ, 1)
will be equal to the product of F(α, β, γ + k, 1)

by (γ− α)(γ + 1− α)(γ + 2− α) · · · (γ + k− 1− α)

by (γ− β)(γ + 1− β)(γ + 2− β)· · · (γ + k− 1− β)

divided by the product

of γ(γ + 1)(γ + 2) · · · (γ + k− 1)

by (γ− α− β)(γ + 1− α− β)(γ + 2− α− β) · · · (γ + k− 1− α− β)

18.

Let us introduce the following notation:

[38] Π(k, z) =
1 · 2 · 3 · · · k

(z + 1)((z + 2)(z + 3) · · · (z + k)
kz

where k is always to be understood to denote a positive integer, by which
restriction Π(k, z) exhibits a completely determined function of the two quan-
tities k, z. This way it is easily seen that the theorem propounded at the end
of the preceding article can be exhibited as follows

[39] F(α, β, γ, 1) =
Π(k, γ− 1) ·Π(k, γ− α− β− 1)
Π(k, γ− α− 1) ·Π(k, γ− β− 1)

19.

It will be worth one’s while, to consider the nature of the function Π(k, z). If z
is a negative integer, the function obviously takes on infinitely large values, if
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k is sufficiently large at the same time. But for the non negative integer values
of z we have

Π(k, 0) = 1

Π(k, 1) =
1

1 + 1
k

Π(k, 2) =
1 · 2(

1 + 1
k

) (
1 + 2

k

)
Π(k, 3) =

1 · 2 · 3(
1 + 1

k

) (
1 + 2

k

) (
1 + 3

k

)
etc. or generally

[40] Π(k, z) =
1 · 2 · 3 · · · z(

1 + 1
k

) (
1 + 2

k

) (
1 + 3

k

)
· · ·
(
1 + z

k

)
Generally we have for each value of z

[41] Π(k, z + 1) = Π(k, z)
1 + z

1 + 1+z
k

[42] Π(k + 1, z) = Π(k, z)

{(
1 + 1

k

)z+1

1 + 1+z
k

}
and hence, since Π(1, z) = 1

z+1 ,

[43] Π(k, z) =
1

z + 1
· 2z+1

1z · (2 + z)
· 3z+1

2z · (3 + z)
· 4z+1

3z · (4 + z)
· · · · kz+1

(k− 1)z · (k + z)

20.

But the limit, to which the functions Π(k, z) converges for a given value of z,
while k grows to infinity, deserves some special attention. First, let h be a finite
value of k greater than z, and it is plain, if k is supposed to go over into h + 1
from h, that the logarithm of Π(k, z) obtains an increment, which is expressed
by the following convergent series
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z(1 + z)
2(h + 1)2 +

z(1− zz)
3(h + 1)3 +

z(1 + z3)

4(h + 1)4 +
z(1− z4)

5(h + 1)5 + etc.

Therefore, if k goes over from the value h to h + n, the logarithm of Π(k, z)
will obtain the following increment

1
2

z(1 + z)
(

1
(h + 1)2 +

1
(h + 2)2 +

1
(h + 3)2 + etc. +

1
(h + n)2

)
+

1
3

z(1− zz)
(

1
(h + 1)3 +

1
(h + 2)3 +

1
(h + 3)3 + etc. +

1
(h + n)3

)
+

1
4

z(1 + z3)

(
1

(h + 1)4 +
1

(h + 2)4 +
1

(h + 3)4 + etc. +
1

(h + n)4

)
+etc.

which is easily proved to always remain finite, if n grows to infinity. Therefore,
if there is no infinite factor in Π(h, z), i. e., if z is not a negative integer number,
the limit of Π(k, z) for k = ∞ will certainly be a finite quantity. Therefore,
Π(∞, z) will only depend on z, or exhibits a completely determined function
of z, which we will denote simply by Πz from now on. Therefore, we define
the function Πz by the value of the product

1 · 2 · 3 · · · k · kz

(z + 1)(z + 2)(z + 3) · · · (z + k)

for k = ∞, or, if you like it more, by the limit of the infinite product

1
z + 1

· 2z+1

1z(2 + z)
· 3z+1

2z(3 + z)
· 4z+1

3z(4 + z)
etc.

21.

From equation 41 immediately the fundamental equation

[44] Π(z + 1) = (z + 1)Πz

follows, whence generally, while n denotes an arbitrary positive integer num-
ber,
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[45] Π(z + n) = (z + 1)(z + 2)(z + 3) · · · (z + n)Πz

For a negative integer value of z the value of the function Πz will be infinitely
large, for the integer non negative values we have

Π0 = 1

Π1 = 1

Π2 = 2

Π3 = 6

Π4 = 24 etc.

and generally

[46] Πz = 1 · 2 · 3 · · · z

But this property of our function would be a bad definition for it, which of
course is restricted to integer values, and except for our function infinitely
many others (e.g., cos 2πz ·Πz, cos2n πz ·Πz etc, while π denotes the half of
the circumference of the circle whose radius is = 1) have the same property.

22.

The function Π(k, z), even if it seems to be more general than Πz, will nevert-
heless be superfluous for us from this point, since it is easily reduced to the
latter. For, combining equations 38, 45, 46 one concludes

[47] Π(k, z) =
kzΠk ·Πz
Π(k + z)

Furthermore, the connection of these fractions to those, which Kramp called
numerical factorials, is obvious immediately. Of course a numerical factorial,
which this author denotes by abIc, in our notation is

=
cbb

a
c Πb

Π
(
b, a

c − 1
) =

cbΠ
( a

c + b− 1
)

Π
( a

c − 1
)

But it seems more advisable, to introduce a function of one variable into
analysis, than a function of three variables, especially since this one can be
reduced to that one.

27



23.

The continuity of the function Πz is interrupted, if its value becomes infinitely
large, i. e. for negative integer values of z. Therefore, it will be positive from
z = −1 to z = ∞, and since for each limits Πz obtains an infinitely large value,
between tem a minimal value exists, which we find to be = 0.88560624 and
to correspond to z = 0.4616321. Between the limits z = −1 and z = −2 the
value of the function Πz becomes negative, between z = −2 and z = −3 it is
positive again and so forth, as it follows from eq. 44. Further, it is plain, if all
values of the function Πz between two arbitrary limits distant from each other
by 1, e.g., from z = 0 to z = 1 are considered to be known, that the value of
the function can hence easily be deduced for each real value of z by means
of equation 45. For this purpose we constructed the table at the end of this
section1, which exhibits the Briggsian logarithms of the function Πz to twenty
figures calculated from z = 0 to z = 1 for each integer multiple of 1

100 , where
it nevertheless to mentioned that sometimes the last digit can deviate by one
or two units.

24.

Since the limit of the function F(α, β, γ + k, 1), while k grows to infinity, it
obviously one, equation 39 goes over into this one

[48] F(α, β, γ, 1) =
Π(γ− 1) ·Π(γ− α− β− 1)
Π(γ− α− 1) ·Π(γ− β− 1)

which formula exhibits the complete solution of the question, to answer which
was the aim of this section. Hence these elegant equations follow immediately:

[49] F(α, β, γ, 1) = F(−α,−β, γ− α− β, 1)

[50] F(α, β, γ, 1) · F(−α, β, γ− α, 1) = 1

[51] F(α, β, γ, 1) · F(α,−β, γ− β, 1) = 1

in the first of which γ, in the second γ − β, in the third γ − α must be a
positive quantity.

1This table will not be reproduced in this translation.
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25.

Let us apply formula 48 to some of the equations of art 5 formula XIII; by
setting t = 90◦ = 1

2 π, we have 1
2 π = F

( 1
2 , 1

2 , 3
2 , 1
)

or the known equation

1
2

π = 1 +
1 · 1
2 · 3 +

1 · 1 · 3
2 · 4 · 5 +

1 · 1 · 3 · 5
2 · 4 · 6 · 7 + etc.

Therefore, since by formula 48 one has F
( 1

2 , 1
2 , 3

2 , 1
)
=

Π 1
2 ·Π(−

1
2 )

Π0·Π0 , and Π0 = 1,

Π 1
2 = 1

2 Π
(
− 1

2

)
, it is

(
Π
(
− 1

2

))2
or

[52] Π
(
−1

2

)
=
√

π

[53] Π
1
2
=

1
2
√

π

Formula XVI art. 5, which is equivalent to the known equation

sin nt = n sin t− n(nn− 1)
2 · 3 sin3 t +

n(nn− 1)(nn− 9)
2 · 3 · 4 · 5 sin5 t− etc.

and holds in general for each value of n, if t lies between −90◦ and +90◦, for
t = 1

2 π gives

sin
nπ

2
=

nΠ 1
2 ·Π

(
− 1

2

)
Π
(
− 1

2 n
)
·Π 1

2 n

whence this elegant formula is deduced

Π
1
2

n ·Π
(
−1

2
n
)
=

1
2 nπ

sin 1
2 nπ

, or by setting n = 2z

[54] Π(−z) ·Π(+z) =
zπ

sin zπ

[55] Π(−z) ·Π(z− 1) =
π

sin zπ

and writing z + 1
2 for z

[56] Π
(
−1

2
+ z
)
·Π
(
−1

2
− z
)
=

π

cos zπ
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From the combination of formula 54 and the definition of Π it follows that
zπ

sin zπ is the limit of the infinite product

(1 · 2 · 3 · 4 · · · k)2

(1− zz)((4− zz)(9− zz) · · · (kk− zz)

while k grows to infinity, and hence

sin zπ = zπ(1− zz)
(

1− zz
4

) (
1− zz

9

)
etc. to infinity

and in the same manner one deduces from 56

cos zπ = zπ(1− 4zz)
(

1− 4zz
9

)(
1− 4zz

25

)
etc. to infinity

both very well-known formulas, which are usually found by the analysts by
completely different methods.

26.

While n denotes an integer number, the value of the expression

nnzΠ(k, z) ·Π
(
k, z− 1

n

)
·Π
(
k, z− 2

n

)
· · ·Π

(
k, z− n−1

n

)
Π(nk, nz)

simplified correctly is found to be

=
(1 · 2 · 3 · · · k)nnnk

1 · 2 · 3 · · · nk · k 1
2 (n−1)

and hence independent from z, or it will remain the same, whatever value is
attributed to z. Therefore, since Π(k, 0) = Π(nk, 0) = 1, it will be possible to
be exhibited by the product

Π
(

k,− 1
n

)
·Π
(

k,− 2
n

)
·Π
(

k,− 3
n

)
· · ·Π

(
k,−n− 1

n

)
Therefore, while k grows to infinity, we obtain

nnzΠz ·Π
(

z− 1
n

)
Π ·
(
z− 2

n
)
·Π
(

z− n−1
n

)
Πnz

= Π
(
− 1

n

)
·Π
(
− 2

n

)
·Π
(
− 3

n

)
· · ·Π

(
−n− 1

n

)
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The product on the right-hand side, multiplied by itself in the inverse order
of the factors, by form. 55, produces

π

sin 1
n π
· π

sin 2
n π
· π

sin 3
n π
· · · π

sin n−1
n π

=
(2π)n−1

n

Hence we have the elegant theorem

[57]
nnzΠz ·Π

(
z− 1

n

)
·Π
(
z− 2

n

)
· · ·Π

(
z− n−1

n

)
Πnz

=
(2π)

1
2 (n−1)
√

n

27.

The integral
∫

xλ−1dx(1− xµ)ν, taken in such a way, that it vanishes for x = 0,
is expressed by the following series, if λ, µ are positive quantities:

xλ

λ
− νxµ+λ

µ + λ
+

ν(ν− 1)x2µ+λ

1 · 2 · (2µ + λ)
− etc. =

xλ

λ
F
(
−ν,

λ

µ
,

λ

µ
+ 1, xµ

)
Hence the value for x = 1 will be

=
Π λ

µ ·Πν

λΠ
(

λ
µ + ν

) .

From this theorem all relations, which Euler once found with a lot of work,
follow immediately. So, e. g., setting∫ dx√

1− x4
= A,

∫ xxdx√
1− x4

= B

it will be A =
Π 1

4 ·π(−
1
2 )

Π(− 1
4 )

, B =
Π 3

4 ·π(−
1
2 )

3Π( 1
4 )

=
Π− 1

4 ·π(−
1
2 )

4Π( 1
4 )

and hence AB = 1
4 π. At

the same time, since Π 1
4 ·Π

(
− 1

4

)
=

1
4 π

sin 1
4 π
) = π√

8
, it follows from this

Π
1
4
=

4

√
1
8

πAA =
4

√
π3

128BB
, Π

(
−1

4

)
= 4

√
π3

(AA
=

4
√

2πBB

The numerical value of A, computed by Stirling, is = 1.31102877714605987,
the value of B, according to the same author, is = 0.59907011736779611, from
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our calculation, based on a peculiar artifice, = 0.59907011736779610372.

It can easily be shown in general that the value of the function Πz, if z is a
rational quantity = m

µ , while m, µ denote integers, can be deduced from µ− 1
determined values of such integrals for x = 1, and even in several different
ways. For, taking an integer number for λ and a fraction, whose denominator
is = µ, for ν, the value of that integral is always reduced to three Πz, where
z is a fraction with denominator = µ; one Πz of this kind can be reduced to
Π
(
− 1

µ

)
, or to Π

(
− 2

µ

)
, or to Π

(
− 3

µ

)
etc. or to Π

(
− µ−1

µ

)
by formula 45, if

z is indeed a fraction; for, if z is an integer, Πz is known per se. From those
values of integrals, speaking generally, one Π

(
−m

µ

)
, if m < µ, can be found

by elimination2. Yes, even only the half of the total amount of such integrals
will suffice, if we also recall 54. So, e. g., setting

∫ dx
5
√

1− x5
= C,

∫ dx
5
√
(1− x5)2

= D,
∫ dx

5
√
(1− x5)3

= E,
∫ dx

5
√
(1− x5)4

= F, it will be

C = Π
1
5
·Π
(
−1

5

)
, D =

Π 1
5 ·Π

(
− 2

5

)
Π
(
− 1

5

) , E =
Π 1

5 ·Π
(
− 3

5

)
Π
(
− 3

5

) , F =
Π 1

5 ·Π
(
− 4

5

)
Π
(
− 3

5

)
Hence, because of Π 1

5 = 1
5 Π
(
− 4

5

)
, we have

Π
(
−1

5

)
=

5

√
5C4

DEF
, Π

(
−2

5

)
=

5

√
25C3D3

EEFF
, Π

(
−3

5

)
=

5

√
125CCDDEE

F3 ,

Π
(
−4

5

)
=

5
√

625CDEF

Formulas 54, 55 additionally yield

C =
π

sin 1
5 π

,
D
F

=
sin 1

5 π

sin 2
5 π

so that the two integrals D, E or E and F suffice to compute all values Π
(
− 1

5

)
,

Π
(
− 2

5

)
.

2This elimination, if we introduce logarithms for the quantities, must be applied only to linear
equations. C. F. G.
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28.

Setting y = νx and µ = 1, Πλ·Πν
λΠ(λ+ν)

will be the value of the integral
∫ yλ−1(1− y

ν )
ν
dy

νλ

extended from y = 0 to y = ν, or the value of the integral
∫

yλ−1 (1− y
ν

)ν

for the same limits will be = νλΠλ·Πν
λΠ(λ+ν)

= Π(ν,λ)
λ (form. 47), if ν denotes an

integer. Now, while ν increases to infinity, the limit of Π(ν, λ) will be = Πλ,
but the limit of

(
1− y

ν

)ν will be e−y, while e denotes the base of the hyperbolic
logarithm. Therefore, if λ is positive, Πλ

λ or Π(λ− 1) will express the integral∫
yλ−1e−ydy extended from y = 0 to y = ∞, or writing λ for λ− 1, Πλ is the

value of the integral
∫

yλe−ydy extended from y = 0 to y = ∞, if λ + 1 is a
positive quantity.
More generally setting y = zα, αλ + α − 1 = β,

∫
yλe−ydy goes over into∫

αzβe−zα
, which, if extended from the lower limit z = 0 to the upper limit

z = ∞, will be expressed by Π
(

β+1
α − 1

)
or the value of the integral

∫
αzβe−zα

,

extended from z = 0 to z = ∞, becomes =
Π
(

β+1
α −1

)
α =

Π β+1
α

β+1 , if α and β+ 1 are
positive quantities (if one of them is negative, the integral will be expressed by

−Π β+1
α

β+1 ). So, e. g., for β = 0, α = 2, the value of the integral
∫

e−zzdz is found

= Π 1
2 = 1

2
√

π.

29.

For the sum of logarithms log 1 + log 2 + log 3 + etc. + log z Euler found the
series

(
z + 1

2

)
log z − z + 1

2 log 2π + A
1·2z −

B
3·4z3 +

C
5·6z5 − etc., where A = 1

6 ,
B = 1

30 , C = 1
42 etc. are the Bernoulli numbers. Therefore, this series expresses

log Πz; for, even if on first sight this conclusion seems to be restricted to
integer numbers, nevertheless, considering it with more attention, it will be
found that the expansion used by Euler (Instit. Calc. Diff. Cap. VI. 159) can
be applied to fractional numbers in the same way as to integers: For, he only
assumes that the function of z, which is to be expanded into a series, is of
such a nature that its diminution, if z goes over into z− 1, can be exhibited by
Taylor’s theorem and is = log z. The first condition is based an the continuity
of the function, and therefore it does not hold for negative values of z, to
which that series can hence not be extended: But the second condition is met
by the function log Πz in general without restriction to integer values of z.
Therefore, we will set
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[58] log Πz =

(
z +

1
2

)
log z− z+

1
2

log 2π+
A

1 · 2z
− B

3 · 4z3 +
C

5 · 6z5 −
D

7 · 8z7 + etc.

Since hence one also has

log Π 2z =

(
2z +

1
2

)
log 2z− 2z+

1
2

log 2π+
A

1 · 2 · 2z
− B

3 · 4 · 8z3 +
C

5 · 6 · 32z5 −
D

7 · 8 · 128z7 + etc.

and by formula 57 setting n = 2

log Π
(

z− 1
2

)
= log Π2z− log Πz−

(
2z +

1
2

)
log 2 +

1
2

log 2π, we also have

[59] log Π
(

z− 1
2

)
= z log z− 1

2
log 2π− A

1 · 2 · 2z
+

7B
1 · 2 · 8z3 −

31C
1 · 2 · 32z5 +

127D
1 · 2 · 128z7 − etc.

These two series converge rapidly for large values of z at the beginning so that
the approximate sum can be calculated conveniently and sufficiently exactly:
Nevertheless one has to note that for each given value of z, no matter how
large, one can only reach a limited precision, since the Bernoulli numbers
constitute a hypergeometric series, and hence those series, if they are just
extended far enough, certainly go over into divergent ones from convergent
ones. Furthermore, it can not be denied that the theory of such divergent
series still has many difficulties, on which we will maybe comment on another
occasion.

30.

From formula 38 it follows

Π(k, z + ω)

Π(k, z)
=

z + 1
z + 1 + ω

· z + 2
z + 2 + ω

· z + 3
z + 3 + ω

· · · z + k
z + k + ω

· kω

whence, having taken logarithms and having expanded them into infinite
series, it results
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[60] log Π(k, z + ω) = log Π(k, z)

+ω

(
log k− 1

z + 1
− 1

z + 2
− 1

z + 3
− etc.− 1

z + k

)
+

1
2

ωω

(
1

(z + 1)2 +
1

(z + 2)2 +
1

(z + 3)2 + etc. +
1

(z + k)2

)
−1

3
ω3
(

1
(z + 1)3 +

1
(z + 2)3 +

1
(z + 3)3 + etc. +

1
(z + k)3

)
+etc. to inf.

The series, here multiplied by ω, which, if you like it better, can also be
exhibited this way

− 1
z + 1

+ log 2− 1
z + 2

+ log
3
2
− 1

z + 3
+ log

4
3
− 1

z + 4
+ log

5
4
− etc.+ log

k
k− 1

− 1
z + k

consists of a finite number of terms, but while k grows to infinity, will converge
to a certain limit, which constitutes a new species of transcendental functions,
in the following to be denoted by Ψz, for us.

Further, denoting the sums of the following series, if continued to infinity,

1
(z + 1)2 +

1
(z + 2)2 +

1
(z + 3)2 + etc.

1
(z + 1)3 +

1
(z + 2)3 +

1
(z + 3)3 + etc.

1
(z + 1)4 +

1
(z + 2)4 +

1
(z + 3)4 + etc.

etc.

by P, Q, R etc. respectively (it seems less necessary to introduce functions for
them), we will have

[61] log Π(z + ω) = log Πz + ωΨz +
1
2

ωωP− 1
3

ω3Q +
1
4

ω4R− etc.
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The function Ψz will obviously be the first derivative of the function log Πz,
and hence

[62]
dΠz
dz

= Πz ·Ψz

Therefore, it will be P = dΨz
dz , Q = − ddΨz

2dz2 , R = + d3Ψz
2·3dz3 etc.

31.

The function Ψz is almost as memorable as the function Πz, whence we want
to derive some more interesting relations of it here. From the differentiation
of 44 we find

[63] Ψ(z + 1) = Ψz +
1

z + 1
whence

[64] Ψ(z + n) = Ψz +
1

z + 1
+

1
z + 2

+
1

z + 3
+ etc. +

1
z + n

By means of this formula it is possible to proceed from smaller values of z to
larger ones, or go backwards from larger values to smaller ones: For larger
positive values of z the numerical values of the function are computed conve-
niently applying by the following formulas resulting from the differentiation
of the equations 58, 59, on which nevertheless the following things are to be
noted, which we mentioned in art. 29 on the formulas 58 and 59:

[65] Ψz = log z +
1
2z
− A

2zz
+

B

4z4 −
C

6z3 + etc.

[66] Ψ
(

z− 1
2

)
= log z +

A

2 · 2zz
− 7B

4 · 8z4 −+
31C

6 · 32z3 − etc.

So for z = 10 we computed

Ψz = 2.35175258906672110764743

whence we get back to

Ψ0 = −0.57721566490153286060653
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3 For a positive value of z in general we have

[67] Ψz = Ψ0 + 1 +
1
2
+

1
3
+ etc. +

1
z

But for a negative integer value Ψz obviously becomes an infinitely large
quantity.

32.

Formula 55 gives us log Π(−z) + log Π(z− 1) = log π − log sin zπ, whence
by differentiation

[68] Ψ(−z)− ψ(z− 1) = π cot zπ

And since from the definition of the function Ψ one generally has

[69] Ψx−Ψy = − 1
x + 1

+
1

y + 1
− 1

x + 2
+

1
y + 2

− 1
x + 3

+ etc.

this known series results

π cot zπ =
1
z
− 1

1− z
+

1
1 + z

− 1
2− z

+
1

2 + z
− 1

3− z
+ etc.

In the same way from the differentiation of formula 57 it results

[70] Ψz+Ψ
(

z− 1
n

)
+Ψ

(
z− 2

n

)
+ etc.+Ψ

(
z− n− 1

n

)
= nΨnz−n log n

and hence setting z = 0

3Since this value from the twentieth digit deviates from the value, which Mascheroni compu-
ted in the Appendix of Euler’s Calculum Integr., I hired F. Nicolai, a young man undisputed
in calculations, to repeat and extend that calculation. Therefore, he found by a double-
checked calculation, of course going backwards first from z = 50 then from z = 100,
Ψ0 = −0.5772156649015328606065120900824024310421
Due to the same most proficient calculator is first part of the table, exhibiting the values of
the function Ψz to 18 figures (of which the last is not certain) for all values of z from 0 to 1
for each multiple of 1

100 , added at the end of this section. Furthermore, the methods, by
which each of both tables was constructed, is based partially on the theorems given here,
partially one singular artifices, which we will explain on another occasion. C. F. G.
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[71] Ψ
(
− 1

n

)
+Ψ

(
− 2

n

)
+Ψ

(
− 3

n

)
+ etc.+Ψ

(
−n− 1

n

)
= (n− 1)Ψ0−n log n

So, e. g., one has

Ψ
(
−1

2

)
= Ψ0− 2 log 2 = −1.96351002602142347944099, whence further

Ψ
1
2
= +0.03648997397857652055901.

33.

As in the preceding art. we reduced Ψ
(
− 1

2

)
to Ψ0 and a logarithm, so gene-

rally we will reduce Ψ
(
−m

n

)
, while m, n denote integers, m being the smaller

one, to Ψ0 and logarithms. Let us set 2π
n = ω, and let ϕ be equal to one of

the angles ω, 2ω, 3ω · · · (n− 1)ω; hence 1 = cos nϕ = cos 2nϕ = cos 3nϕ

etc., cos ϕ = cos(n + 1)ϕ = cos(n + 2)ϕ etc., cos 2ϕ = cos(n + 2)ϕ etc., and
cos ϕ + cos 2ϕ + cos 3ϕ + etc. + cos(n− 1)ϕ + 1 = 0. Therefore, we have

cos ϕ ·Ψ1− n
n

= −n cos ϕ + cos ϕ · log 2− n
n + 1

cos(n + 1)ϕ + cos ϕ · log
3
2
− etc.

cos 2ϕ ·Ψ2− n
n

= −n
2

cos 2ϕ + cos 2ϕ · log 2− n
n + 2

cos(n + 2)ϕ + cos 2ϕ · log
3
2
− etc.

cos 3ϕ ·Ψ3− n
n

= −n
3

cos 3ϕ + cos 3ϕ · log 2− n
n + 3

cos(n + 3)ϕ + cos 3ϕ · log
3
2
− etc.

etc. to

cos(n− 1)ϕ ·Ψ
(
− 1

n

)
= − n

n− 1
cos(n− 1)ϕ + cos(n− 1)ϕ · log 2− n

2n− 1
cos(2n− 1)ϕ

+ cos(n− 1)ϕ · log
3
2
− etc.

Ψ0 = −n
n

cos nϕ + log 2− n
2n

cos 2nϕ + log
3
2
− etc.

and by summation
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cos ϕ ·Ψ1− n
n

+ cos 2ϕ ·Ψ2− n
n

+ cos 3ϕ ·Ψ3− n
n

+ etc.+ cos(n− 1)ϕ ·Ψ
(
− 1

n

)
+Ψ0

−n
(

cos ϕ +
1
2

cos 2ϕ +
1
3

cos 3ϕ +
1
4

cos 4ϕ + etc. to infinity
)

But in general, for a value of x not larger than 1, one has

log(1− 2x cos ϕ + xx) = −2
(

x cos ϕ +
1
2

xx cos 2ϕ +
1
3

x3 cos 3ϕ + etc.
)

which series certainly easily follows from the expansion of log(1 − rx) +
log
(
1− x

r

)
, while r denotes the quantity cos ϕ +

√
−1 sin ϕ. Hence the prece-

ding equation becomes

[72] cos ϕ ·Ψ1− n
n

+ cos 2ϕ ·Ψ2− n
n

+ cos 3ϕ ·Ψ3− n
n

+ etc.+ cos(n− 1)ϕ ·Ψ
(
− 1

n

)

= .Ψ0 +
1
2

n log(2− 2 cos ϕ)

After this, in this equation set ϕ = ω, ϕ = 2ω, ϕ = 3ω etc. up to ϕ = (n− 1)ω,
multiply these single equations in order by cos mω, cos 2mω, cos 3mω etc. up
to cos(n− 1)mω, and to this aggregate of products add equation 71

Ψ
1− n

n
+ Ψ

2− n
n

+ Ψ
3− n

n
+ etc.−Ψ

(
− 1

n

)
= (n− 1)Ψ0− n log n

If one now considers that

1 + cos mω · cos kω + cos 2mω · cos 2kω + cos 3mω · cos 3kω

+etc. + cos(n− 1)mω · cos(n− 1)kω = 0

while k denotes one of the numbers 1, 2, 3 · · · n− 1 except for m and n−m,
for which that sum becomes = 1

2 n, it will be plain that, after division by n
2 ,

from the summation of these equations it results

[73] Ψ
(
−m

n

)
+ Ψ

(
−n−m

n

)
=
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2Ψ0− 2 log n + cos mω · log(2− 2 cos ω) + cos 2mω · log(2− 2 cos 2ω)

+ cos 3mω · log(2− 2 cos 3ω) + etc. + cos(n− 1)mω · log(2− 2 cos(n− 1)ω)

Obviously the last term of this equation is = cos mω · log(2− 2 cos ω), the pe-
nultimate = cos 2mω · log(2− 2 cos 2ω) etc. so that two terms are always equal,
excluding, if n is an even number, the singular term cos n

2 ·mω log
(
2− 2 cos n

2 ω
)
,

which is = +2 log 2 for even m, or = −2 log 2 for odd m. Now combining
equation 73 with this one

Ψ
(
−m

n

)
−Ψ

(
−n−m

n

)
= π cot

m
n

π,

for an odd value of n, if m is a positive integer smaller than n, we have

[74] Ψ
(
−m

n

)
= Ψ0 +

1
2

π cot
mπ

m
− log n + cos

2mπ

n
· log

(
2− 2 cos

2π

2

)
+ cos

4mπ

n
· log

(
2− 2 cos

4π

2

)
++ cos

6mπ

n
· log

(
2− 2 cos

6π

2

)
+ etc.

+ cos
(n− 1)mπ

n
· log

(
2− 2 cos

(n− 1)π
2

)
But for an even value of n

[75] Ψ
(
−m

n

)
= Ψ0 +

1
2

π cot
mπ

n
− log n + cos

2mπ

n
log
(

2− 2 cos
2π

n

)
+ cos

4mπ

n
log
(

2− 2 cos
4π

n

)
+ etc. + cos

(n− 2)mπ

n
log
(

2− 2 cos
(n− 2)π

n

)
± log 2

where the above sign holds for even m, the lower for odd. So, e.g., one finds

Ψ
(
−1

4

)
= Ψ0 +

1
2

π − 3 log 2, Ψ
(
−3

4

)
= Ψ0− 1

2
π − 3 log 2

Ψ
(
−1

3

)
= Ψ0 +

1
2

π

√
1
3
− 3

2
log 3, Ψ

(
−2

3

)
= Ψ0− 1

2
π

√
1
3
− 3

2
log 3

Furthermore, combining these equations with equation 64 it is immediately
plain that Ψz can be determined for each rational value of z, positive or negative,
by Ψ0 and logarithms, which theorem is most memorable.
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34.

Since, by art. 28, Πλ is the value of the integral
∫

yλe−ydy, extended from
y = 0 to y = ∞, if λ + 1 is a positive quantity, by differentiating with respect
to λ we find

dΠλ

dλ
=

d
∫

yλe−ydy
dλ

=
∫

yλe−y log ydy

or

[76] Πλ ·Ψλ =
∫

yλe−y log y · dy, from y = 0 to y = ∞

Generally setting y = zα, αλ+ α− 1 = β, the value of the integral
∫

zβe−zα
log zdz,

extended from z = 0 to z = 0, is found to be

=
1

αα
Π
(

β + 1
α
− 1
)
·Ψ
(

β + 1
α
− 1
)
=

1
α(β + 1)

Π
β + 1

α
·Ψ β + 1

α
− 1

(β + 1)
Π

β + 1
α

if cβ + 1 and α are positive quantities, or the one them is equal to the other
with the opposite sign, if both, β + 1 and α, are negative.

35.

But not only the product Πλ ·Ψλ but also the function Ψλ can be exhibited
by a definite integral. While k denotes a positive integer it is plain that the
value of the integral

∫ xλ−xλ+k

1−x dx, extended from x = 0 to x = 1, is

=
1

λ + 1
+

1
λ + 2

+
1

λ + 3
+ etc. +

1
λ + k

Further, since the value of the integral
∫ ( 1

1−x −
kxk−1

1−xk

)
dx generally is =

Const. + log 1−xk

1−x , the same from the lower limit x = 0 to the upper limit
x = 1 it will be = log k, whence it is plain that the value of the integral
S =

∫ ( 1−xλ−xλ+k

1−x − kxk−1

1−xk

)
dx for the same limits is

= log k− 1
λ + 1

− 1
λ + 2

− 1
λ + 3

− etc.− 1
λ + k

which expression we will denote by Ω. Let us split the integral S into two
parts

41



∫ (1− xλ

1− x

)
dx +

∫ ( xλ+k

1− x
− kxk−1

1− xk

)
dx

The first part
∫ 1−xλ

1−x dx, setting y = xk is changed into

∫ kyk−1 − kyλk+k−1

1− yk dy

whence it is immediately plain that its value, extended from x = 0 to x = 1, is
equal to the value of the integral

∫ kxk−1 − kxλk+k−1

1− xk dx

for the same limits, since the letter y can be changed into x without any
restriction. Hence the integral S, for the same limits, becomes

=
∫ ( xλ+k

1− x
− kxλk+k−1

1− xk

)
dx

But this integral, setting xk = z, goes over into

∫ ( z
λ+1

k

k(1− z)
1
k
− zλ

1− z

)
dz

which therefore, taken for the lower limit z = 0 and the upper limit z = 1, is
equal to Ω. But while k grows to infinity, the limit of ω is Ψλ, the limit of λ+1

k

is 0, but the limit of k(1− z)
1
k is log 1

z or − log z. Hence we have

[77] Ψλ =
∫ ( 1

log 1
z

− zλ

1− z

)
dz =

∫ (
− 1

log z
− zλ

1− z

)
dz

having extended the integral from z = 0 to z = 1.

36.

The definite integrals, by which the functions Πλ, Πλ · Ψλ were expressed
above, had to be restricted to such values of λ, that λ + 1 becomes a positive
quantity: This restriction follows from the deduction, and it is indeed easily
understood that for other values of λ those integrals always become infinite,
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even if the functions Πλ, Πλ · Ψλ can remain finite. For formula 77 to be
true certainly the same condition must be satisfied that λ + 1 is a positive
quantity (for, otherwise the integral becomes infinite, of course, even if the
function Ψλ remains finite): But the general deduction seems to require no
restriction on first sight. But paying some more attention it will easily be
clear, that this restriction is already contained in the analysis, by which the
formula was found. Of course, we silently assumed that the integral

∫ 1−xλ

1−x dx,

which is equal to
∫ kxk−1−kxλk+k−1

1−xk dx and which we substituted for it, has a
finite value, which condition requires that λ + 1 is a positive quantity. From
our analysis it certainly follows that these two integrals are always equal, if
this one is extended from x = 0 to x = 1− ω, but that one from x = 0 to
x = (1−ω)k, insofar ω is a small quantity, just not = 0: But although there
is not obstruction, in the case, where λ + 1 is no positive quantity, the two
integrals, extended from x = 0 to the same upper limit x = 1− ω, do not
converge to the ratio of equality, but their difference, while ω grows to infinity,
will increase to infinity. This example demonstrates, how much attention is
necessary in the treatment of infinite quantities, which are only to be admitted
in analytic arguments, if they can be reduced to the theory of limits.

37.

Setting z = e−u in formula 77 it is plain that it can also be exhbited this way

Ψλ = −
∫ ( e−u

u
− e−uλ−u

1− e−u du
)

from u = ∞ to u = 0, i. e.

[78] Ψλ =
∫ ( e−u

u
− e−λu

eu − 1

)
du from u = 0 to u = ∞

(Therefore, the value of Πλ mentioned in art. 28, setting e−y = v, is changed
into

Πλ =
∫ (

log
1
v

)λ

dv from v = 0 to v = 1)

Further, it is plain from formula 77 that

[79] Ψλ−Ψµ =
∫ zµ − zλ

1− z
dz from z = 0 to z = 1
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where except λ + 1 also µ + 1 must be a positive quantity.
Setting z = uα in the same formula 77, while α denotes a positive quantity, we
find

Ψλ =
∫ (
− uα−1

log u
− auαλ+α−1

1− uα

)
du from u = 0 to u = 1

and since hence for a positive value of β one can set

Ψλ =
∫ (
− uβ−1

log u
− βuβλ+β−1

1− uβ

)
du

it is plain that

0 =
∫ (uα−1 − uβ−1

log u
+

αuαλ+α−1

1− uα
− βuβλ+β−1

1− uβ

)
or

∫ uα−1 − uβ−1

log u
du =

∫ (
βuβλ+β−1

1− uβ
− αuαλ+α−1

1− uα

)
du

having extended the integral from u = 0 to u = 1 each time. But putting
λ = 0, the second integral can assigned even for the indefinite case; of course,
it is = log 1−uα

1−uβ , if it must vanish for u = 0; therefore, since for u = 1 one must

set 1−uα

1−uβ = α
β , we will have the integral log α

β =
∫ uα−1−uβ−1

log u du, extended from
u = 0 to u = 1, which theorem was once found by Euler by other methods.
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